Graph Theory and Connectivity

Different types of graphs

Ē

Boccaletti et al. 2006

Matrix Form

Why do we care about graphs?

- Our neuroscientist half:
 - Assess connections among networks of neurons
- Our computational half:
 - Visualize and solve difficult computational problems
- Focus of today will be on the former

Neurons are Connected

- We know how to characterize neural responses in isolation
 - STA
 - Information Theory
 - "Noise Correlations"

Neurons are Connected

- Neurons are not isolated
- Neurons are connected
- Neural connections are probably functionally important

Neurons are Connected

- How to measure neural connectivity?
 - Anatomical Connectivity
 - Effective Connectivity
 - Functional Connectivity

Anatomical Connectivity

Bock et al. 2011

Anatomical Connectivity

Effective Connectivity

Ē

Song et al 2005

Effective/Functional Connectivity

Ē

Bruno and Sakmann 2006

Functional Connectivity

Reid and Alonso1995

Now what?

- Consider neurons as nodes and synapses as edges
- Connectivity measures dictate edge
 - Locations
 - Directedness
 - Weights

C elegans adjacency matrix

Varshney et al. 2011

Now what?

- We need priors to make interpretations of our graphs meaningful
- We need summary measures to describe big networks in the first place

Graph Priors

- Random (Erdős–Rényi) Graphs
- Regular Graphs
- Small-World Graphs

Random Graphs

 Defined by a uniform, independent connection probability between any two nodes

Watts and Strogatz 1996

Regular Graphs

- Deterministic edge distributions
- Often determined by Euclidian distance

Watts and Strogatz 1996

Small-World Graphs

- Generate regular graph
- Randomly shuffle edge connections from a subset of nodes
- Determined by uniform shuffling probability

Graph measures

- Motif frequencies
- Clustering coefficient
- Characteristic path length
- Degree distribution

Motif Frequencies

• Subgraph: A subset of nodes & their connected edges lifted from a larger graph

Motif Frequencies

- Analyze the likelihood of all possible N-sized subgraphs
- Usually compared against random priors

Null hypothesis assumes independent connection probabilities

Song et al. 2005

Motifs: Random Prior

For simple, undirected, unweighted random graphs with connection probability p:

P(edges|subgraph) = p

Motifs: C elegans vs. Random

F

Varshney et al. 2011

Clustering Coefficient

- Complete Graph: A graph of N nodes in which each node is connected to all other nodes in the network
- Complete subgraphs known as "cliques"
- For a simple, unweighted, undirected network:

$E \equiv$ number of edges

$$E = \frac{1}{2}N(N-1)$$

Clustering Coefficient

• Neighborhood: For some node, the subgraph of all nodes connected to it.

Clustering Coefficient

- Two types: local and average
 - Local: Completeness (clique-ness) of the neighborhood of node \overline{i}
 - For a neighborhood with n_i nodes and adjacency matrix with binary elements of the type c_{jk} :

$$C_i = \frac{\sum_{j < k} c_{jk}}{\frac{1}{2}n_i(n_i - 1)}$$

- <u>Average</u>: Mean clustering across all N nodes of the full graph:

$$\langle C \rangle = \frac{1}{N} \sum_{i=1}^{N} C_i$$

Characteristic Path Length

- *Path*: Alternating sequence of edges and nodes, beginning and terminating with a node
- Path Length: Sum of edge weights in a path

Characteristic Path Length

- *Minimum Path Length:* For a given pair of nodes, the minimum edge count among all possible paths
- Solved using Dijkstra's algorithm

Minimum Path Length Solution

function Li = Dijkstra(A,i)
% Takes adjacency matrix A, starting node index i
% mark non-existent edges as having weights of inf
% Li gives the minimum distance to each node
% for directed graphs, columns dictate the "from" node

n	= size(A,1);	0/0	node count
Li	= inf(n,1);	0/0	distance functions initialized to inf
Li(i)	= 0;	0/0	starting point w/O dist by definition
uv	= 1:n;	0/0	indices of unvisited nodes

```
while any(uv)
  [~,ci] = min(Li(uv)); % find terminal index of shortest path
  current = uv(ci); % greedily mark as "current"
  uv(ci) = []; % ...and, in turn, as "visited"
```

```
Li(uv) = min(Li(uv),Li(current) + A(uv,current));
% minimum of previous distance & current
```

Characteristic Path Length

• Characteristic Path Length: The mean minimum path length across all pairs of (different) nodes:

```
>> n = size(A,1);
>> dists = [];
>> for i = 1:n
dtemp = Dijkstra(A,i);
dtemp(i) = [];
dists = vertcat(dists,dtemp);
end
>> mean(dists)
```

L and C of prior graphs

- Regular: $L \sim N$ $C \sim 1$
- **Random:** L ~ log N C ~ 1/N

Regular

Random

Watts and Strogatz 1996

L and C of prior graphs

- Regular: $L \sim N$ $C \sim 1$
- Random: L ~ log N
- Small World: $L \sim \log N$

 $C \sim 1/N$ C ~ 1

"Sweet Spot"

Real Networks in the "Sweet Spot"

Table 1 Empirical examples of small-world networks

	Lactual	Lrandom	$C_{ m actual}$	C_{random}
Film actors	3.65	2.99 12.4	0.79	0.00027
C. elegans	2.65	2.25	0.28	0.05
N=279				

Watts and Strogatz 1996

Tree Shrew Small World

Bosking et al. 1997

Degree Distributions

- The **degree** of a node k_i is simply the number of edges connected to that node
- The **degree distribution** P(k) is the probability across a network of a node having degree k.

Hubs: High-Degree Nodes

Random Networks

• The degree distribution of a random network is:

Random Networks

- For random networks:
 - $P(k) \propto a^{-k}$

Real Networks

- Empirically, in many real networks
 - $P(k) \propto k^{-\gamma}$

Barabasi and Albert 1999

Scale Invariance

• A constant scaling of the inputs leads to a constant scaling of the outputs

$$f(cx) = c^{\gamma} f(x)$$
$$f(x) = ax^{\gamma}$$

- Power laws lead to scale invariance
- A power law degree distribution defines a *'scale free' network*

Scale Free Networks

- Scale free networks have a "heavy tail"
- Thus, scale free networks have hubs

Real Networks: Low k be havior

- Power law is only good for asymptotic k
- Low k show binomial behavior

Varshney et al. 2011

Recap

- Graphs useful for two things from our perspective
 - Quantifying network connectivity
 - Formulating problems in easily-analyzable format
- Neural networks are
 - Clustered and connected
 - Have highly likely hubs
 - Best approximated by small-world priors: a mix of random and regular