
Graph Theory and Connectivity



What is a graph?

Nodes

Edges

Presenter
Presentation Notes
Before I really get into this lecture, I want to spend a couple slides really defining WHAT a graph is for you guys. Here’s the components.



Different types of graphs

Directed Weighted

Boccaletti et al.  2006

Presenter
Presentation Notes
Here’s the varying complexities (basic, directed, weighted). Note that complexity deals only with the edges; the nodes are of fixed complexity.



Matrix Form

Presenter
Presentation Notes
And here’s alternative ways to represent graphs in a manner amenable to MATLAB. Note that properties of graphs translate to properties of matrices (namely, symmetry and binariness)



Why do we care about graphs?

• Our neuroscientist half:
– Assess connections among networks of neurons

• Our computational half:
– Visualize and solve difficult computational problems

• Focus of today will be on the former

Presenter
Presentation Notes
Now we know what a graph is. Let’s step back. Why do we care?



Neurons are Connected

• We know how to characterize neural responses 
in isolation
– STA

– Information Theory

– “Noise Correlations”

Presenter
Presentation Notes
So far in the class, we have focused on methods that analyze neurons either as single units or as independently functioning units.STA reconstructed receptive fields for single neuronsInformation theory looked at per-neuron information and made some assumptions of independence to determine network informationAnd in that context, we briefly touched on “noise correlations”, which are correlations arising from connectivity and which we lament for messing with our information metrics!HOWEVER



Neurons are Connected

• Neurons are not isolated
• Neurons are connected
• Neural connections are probably functionally 

important

Presenter
Presentation Notes




Neurons are Connected

• How to measure neural connectivity?
– Anatomical Connectivity

– Effective Connectivity

– Functional Connectivity

Presenter
Presentation Notes
So when we speak of “connected”, what do we mean by that? There’s three main ways we quantify connectivity:Anatomical: static, physical synapsesEffective: mechanistic, causal relationship between unit activity (often via directly measured electrophysiological I/O properties)Functional: purely correlation of activity



Anatomical Connectivity

Bock et al. 2011

Presenter
Presentation Notes
0.5x0.5x0.33 tall rectangle of cortex (layers 1, 2/3 and a little of 4). Mouse primary visual cortex. These neurons are functionally characterized with 2-photon imaging of calcium sensitive dye (orientation tuning curves, right). Then they densely reconstruct every neuron in a 3D cube by EM of thin slices. Figure A shows rendering of a bunch of neurons (colored balls), but only three relevant ones. Figures B and C show how synapses were characterized (note the postsynaptic densities), which are in turn marked with yellow dots in Figure A.



Anatomical Connectivity

Briggman et al. 2011

Presenter
Presentation Notes
Anatomical connections between direction selective ganglion cells (DSGCs) and inhibitory starburst amacrine cells (SACs) of the retina. SACs respond maximally to centrifugal motion, which in turn yields inhibition of connected DSGCs. The question is whether their connectivity could give rise to direction computations in DSGCs.DGSCs were functionally characterized using 2-photon optical imaging, similar to the last figure. SACs anatomically by their characteristic patterns.Top figures show SEM images. A-B are real synapses, C-D are non-real synapses, E is them jerking it to the fact that SEM resolution can catch the separation whereas optical techniques cannot.The bottom figure shows connectivity of differently-tuned DSGCs to the dendritic varicosities to the SAC. The idea is that the SAC is at the center of four direction-selective DSGC units, and a stimulus moving across that DSGC such that it produces centripetal motion in the SAC gives rise to uninhibited excitation, thereby direction selectivity.You should notice that anatomical connectivity generally isn’t great on its own, and needs some sort of functional measure to accompany it. However, anatomical connectivity generally deals with large volumes very well.



Effective Connectivity

Song et al 2005

Presenter
Presentation Notes
Paper you all have to readBasically, patch 4 cells at onceStimulate 1 neuron, assess the resultant peak of the EPSP in the putatively connected neuronBottom-right corner is a graph (which we’ll get to) depicting directed connection weights based on EPSP peakEffective connectivity is nice, but generally can only be done for a very small network



Effective/Functional Connectivity

Bruno and Sakmann 2006

Presenter
Presentation Notes
Rat S1 during whisker stimulationLayer 4 barrel (i-cell)VPM single unit (e-cell)aPSP = average post-synaptic potentialSTA of Vm before and after the spike. To get the lower trace in B, they shuffle their thalamus and cortex readings across trials. Subtraction in B (STA – stimulus-induced correlation) gets the red trace, i.e., aPSP.



Functional Connectivity

Reid and Alonso1995

Presenter
Presentation Notes
Bottom (b) is demeaned PSTH



Now what?

• Consider neurons as nodes and synapses as 
edges

• Connectivity measures dictate edge
– Locations

– Directedness

– Weights



C  e le g ans adjacency matrix

Varshney et al.  2011

Presenter
Presentation Notes
Connectivity matrix based on gap junction work in C elegansColors = excitatory/inhibitory, also larger symbols = more junction sitesWhat type of graph is this? (weighted and directed)



Now what?

• We need priors to make interpretations of our 
graphs meaningful

• We need summary measures to describe big 
networks in the first place



Graph Priors

• Random (Erdős–Rényi) Graphs
• Regular Graphs
• Small-World Graphs



Random Graphs

• Defined by a uniform, 
independent connection 
probability between any 
two nodes

Watts and Strogatz 1996



Regular Graphs

• Deterministic edge 
distributions

• Often determined by 
Euclidian distance

Watts and Strogatz 1996



Small-World Graphs

• Generate regular graph

• Randomly shuffle edge 
connections from a subset 
of nodes

• Determined by uniform 
shuffling probability

Watts and Strogatz 1996



Graph measures

• Motif frequencies
• Clustering coefficient
• Characteristic path length
• Degree distribution



Motif Frequencies

• Subg raph: A subset of nodes & their connected 
edges lifted from a larger graph

Presenter
Presentation Notes
When a graph is too large and you just want to analyze statistics of snippets



Motif Frequencies

• Analyze the likelihood of all possible N-sized 
subgraphs

• Usually compared against random priors

Song et al. 2005



Motifs: Random Prior

For simple, undirected, unweighted random graphs 
with connection probability 𝑝𝑝:

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝𝑠 = 𝑝𝑝

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝𝑠 = 𝐶𝐶23𝑝𝑝2 1 − 𝑝𝑝

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝𝑠 = 𝑝𝑝3

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝𝑠 = 𝐶𝐶13𝑝𝑝 1 − 𝑝𝑝 2



Motifs: C  e le g ans  vs. Random

Varshney et al. 2011

Presenter
Presentation Notes
Data from the gap junction network in C elegans.Compares likelihood of motifs against some prior (in this case, random graph)



Clustering Coefficient

• C omple te  Graph: A graph of 𝑁𝑁 nodes in which each 
node is connected to all other nodes in the network

• Complete subgraphs known as “cliques”
• For a simple, unweighted, undirected network:

𝐸𝐸 ≡ number of edges

𝐸𝐸 =
1
2
𝑁𝑁 𝑁𝑁 − 1



Clustering Coefficient

• Neig hborhood: For some node, the subgraph of 
all nodes connected to it.



Clustering Coefficient

• Two types: local and average
– Local: Completeness (clique-ness) of the neighborhood of node 
𝑖𝑖

– For a neighborhood with 𝑛𝑛𝑖𝑖 nodes and adjacency matrix with 
binary elements of the type 𝑐𝑐𝑗𝑗𝑗𝑗 :

𝐶𝐶𝑖𝑖 =
∑𝑗𝑗<𝑗𝑗 𝑐𝑐𝑗𝑗𝑗𝑗

1
2𝑛𝑛𝑖𝑖 𝑛𝑛𝑖𝑖 − 1

– Average: Mean clustering across all 𝑁𝑁 nodes of the full graph:

𝐶𝐶 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝐶𝐶𝑖𝑖



Characteristic Path Length

• Path: Alternating sequence of edges and nodes, 
beginning and terminating with a node

• Path Leng th: Sum of edge weights in a path



Characteristic Path Length

• Minimum Path Leng th: For a given pair of 
nodes, the minimum edge count among all 
possible paths

• Solved using Dijkstra's algorithm

Presenter
Presentation Notes
DYKE-straoh god it’s still horrible



Minimum Path Length Solution

function Li = Dijkstra(A,i)
% Takes adjacency matrix A, starting node index i
% mark non-existent edges as having weights of inf
% Li gives the minimum distance to each node
% for directed graphs, columns dictate the "from" node

n             = size(A,1);      % node count
Li            = inf(n,1);       % distance functions initialized to inf
Li(i)         = 0;              % starting point w/0 dist by definition
uv = 1:n;            % indices of unvisited nodes

while any(uv)
[~,ci]    = min(Li(uv));    % find terminal index of shortest path
current   = uv(ci);         % greedily mark as "current"
uv(ci)    = [];             % ...and, in turn, as "visited"

Li(uv)    = min(Li(uv),Li(current) + A(uv,current));
% minimum of previous distance & current

end



Characteristic Path Length

• C haracte ris tic Path Leng th: The mean minimum 
path length across all pairs of (different) nodes:



L and C of prior graphs

• Regular: L ~ N C ~ 1
• Random: L ~ log N C ~ 1/N
• Small World: L ~ log N C ~ 1

Watts and Strogatz 1996



L and C of prior graphs

• Regular: L ~ N C ~ 1
• Random: L ~ log N C ~ 1/N
• Small World: L ~ log N C ~ 1

Watts and Strogatz 1996

Presenter
Presentation Notes
See here: you get the path length of a random network without sacrificing the clustering of a regular network



“Sweet Spot”

Presenter
Presentation Notes
Note that as you become more random, L drops off way faster than CTherefore, you have a “sweet spot” in which real networks reside



Real Networks in the “Sweet Spot”

Watts and Strogatz 1996

N=279

Presenter
Presentation Notes
Note the columns L_actual and C_actual vs L_random and C_random. Real networks have both.



Tree Shrew Small World

Bosking et al. 1997

Presenter
Presentation Notes
Tree shrew V1Colors are orientation columnsBlack bits are all the neurons connected (ANATOMICALLY) to the white dots in these figuresNote the preferential long-range connections to neurons of similar tuning, especially for the figure on the leftThe point is that regular networks assume spatial proximity is ALL that dictates connectivity, whereas small-world networks add in randomness to simulate some latent variable unknown to our naïve priors



Degree Distributions

• The degree of a node ki is simply the number of 
edges connected to that node

• The degree distribution P(k) is the probability 
across a network of a node having degree k.



Hubs: High-Degree Nodes

Barabasi and Bonabeau 2003

Presenter
Presentation Notes
This is the internet. Note the densities: those are hubs, i.e., high-degree nodes



Random Networks

• The degree distribution of a random network is:

P(k)

Presenter
Presentation Notes
This is just the binomial distribution.In case you were wondering, a regular network degree distribution is just a discrete delta function.



Random Networks

• For random networks:
–

P(k)

Presenter
Presentation Notes
This is a fast, exponential dropoff for highly connected nodes. Hubs are not common.



Real Networks
Actor Collaborations Power Grid World Wide Web

• Empirically, in many real networks
–

Barabasi and Albert 1999

Presenter
Presentation Notes
Actor power law – exponent 2.3 . WWW power lab – exponent 2.1 . Power Grid power law - ~ 4.In case you needed more reason to hate random networks.



Scale Invariance

• A constant scaling of the inputs leads to a 
constant scaling of the outputs

• Power laws lead to scale invariance
• A power law degree distribution defines a   

‘scale free’ network

Presenter
Presentation Notes
Generalization of “linear”Important in that it’s “not exponential”



Scale Free Networks

• Scale free networks have a “heavy tail”
• Thus, scale free networks have hubs

P(k)

Presenter
Presentation Notes
Left plot: hard to see the hubsRight plot: log-log plot shows the hubs



Real Networks: Low k behavior
Actor Collaborations Power Grid World Wide Web

Barabasi and Albert 1999

• Power law is only good for asymptotic 𝑘𝑘
• Low 𝑘𝑘 show binomial behavior

Presenter
Presentation Notes
Low degrees less likely than the power law approximationSeem to follow binomial approximation better for low kThus, power law is only really good for explaining the likelihood of hub degrees



C . Ele g ans

Varshney et al. 2011

γ=3.17 γ=4.22

Power Law Fit
Connectivity Data

Presenter
Presentation Notes
And in case you were tired of NON-neural examples, see here how C elegans shows the same sort of behaviorComplete with both binomial low-k behavior and power law high-k behavior



Recap

• Graphs useful for two things from our perspective
– Quantifying network connectivity
– Formulating problems in easily-analyzable format

• Neural networks are
– Clustered and connected
– Have highly likely hubs
– Best approximated by small-world priors: a mix of 

random and regular
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